在编写一年级教案时,需要注意课堂教学的目标和教学方法。以下是一些一年级语文教案的范文,供教师们在备课时参考和借鉴。 高二数学必修二教案篇一(1)理解直线与圆的位置关系的几何性质; (2)利用平面直角坐标系解决直线与圆的位置关系; (3)会用“数形结合”的数学思想解决问题、 用坐标法解决几何问题的步骤: 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论、 重点与难点:直线与圆的方程的应用、 问题设计意图师生活动 生:回顾,说出自己的看法、 2、解决直线与圆的位置关系,你将采用什么方法? 生:回顾、思考、讨论、交流,得到解决问题的方法、 问题设计意图师生活动 3、阅读并思考教科书上的例4,你将选择什么方法解决例4的问题 生:自学例4,并完成练习题1、2、 师:分析例4并展示解题过程,启发学生利用坐标法求,注意给学生留有总结思考的时间、 生:建立适当的直角坐标系,探求解决问题的方法、 8、小结: (1)利用“坐标法”解决问对知识进行归纳概括,体会利师:指导学生完成练习题、 生:阅读教科书的例3,并完成第 问题设计意图师生活动 题的需要准备什么工作? (2)如何建立直角坐标系,才能易于解决平面几何问题? (3)你认为学好“坐标法”解决问题的关键是什么? 高二数学必修二教案篇二>教学目标落实情况. |
的解集是 ; 的解集是 解 绝对值不等式注意不要丢掉 这部分解集. |
五、作业 1.阅读课本 含绝对值不等式解法. 2.习题 2、3、4 |
课堂教学设计说明
1.抓住解 型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.
2.在解 与 绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.
3.针对学生解 ( )绝对值不等式容易出现丢掉 这部分解集的错误,在教学中应根据绝对值的意义从数轴进行突破,并在练习中纠正这个错误,以提高学生的运算能力.
高二数学必修二教案篇三
初中新课程中数学知识点删了很多要求,如“立方和、立方差”公式,“韦达定理”,“十字相乘法分解因式”等。虽然初中新课程对这些知识点不作要求,但是从高中数学教学的实践来看,学生掌握了这些知识点对学习新的知识有一定的促进作用,因此,建议教师可根据学生和教学的实际情况,做适当的补充,同时,初中学习的有理数乘方及运算性质和二次函数,这些知识也要进行必要的复习等,这样有利于后期的教学。
2、思维能力和运算能力的进一步强化
初中新课程的内容倾向于基础性、普及性、应用性和直观性,学生的实践能力很强,但学生的数学思维能力有所欠缺,尤其是抽象思维能力较弱,这对高中数学学习的影响很大。因此,教师要逐渐培养学生的抽象思维能力。同时,由于初中大量使用计算器,学生的计算能力很弱,这与高中数学要求学生要有较强的化简、变形、推理及运算能力有一定的差距,从教学的实践来看,学生作业中出现的大量错误与计算能力较弱有很大关系。因此,建议教师可根据学生的实际情况,从高一开始就要切实提高学生的运算能力。
3、抓住学科特点,做好顺利过渡
高中数学知识量大,理论性、综合性强,同时高中课时少,学生基础差等,知识的难度和对学生能力的要求和初中相比都有较大的提高(如“集合”、“映射”、“函数”等都比较抽象,难度大,“函数”等知识综合性较强)。学好高中数学需要学生具有较强的阅读能力、运算能力、逻辑推理能力、抽象思维能力及分析问题、解决问题的综合能力,这与初中数学知识点较少,难度较低,形成较大的差距。因此,教师要能够根据实际情况及时调整教学方法和教学过程,使学生能顺利进入高中并能尽快适应高中的数学学习。
高二数学必修二教案篇四
1、教材(教学内容)
2、设计理念
3、教学目标
情感态度与价值观目标:引导学生学会阅读数学教材,学会发现和欣赏数学的理性之美、
4、重点难点
重点:任意角三角函数的定义、
难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、
5、学情分析
6、教法分析
7、学法分析
本课时先通过“阅读”学习法,引导学生改造已有的认知结构,再通过类比学习法引导学生形成“任意角的三角函数的定义”,最后引导学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标。
高二数学必修二教案篇五
(一) 知识定位及复习策略
集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。 复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。 本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。
(二) 规律方法总结
1、集合中元素的互异性是集合概念的重点考查内容。一般给出两个集合,并告知两个集合之间的关系,求集合中某个参数的范围或值的时候,要特别验证是否符合元素之间互异性。 2、考查集合的运算和包含关系,解题中常用到分类讨论思想,分类时注意不重不漏,尤其注意讨论集合为空集的情况。 3、新定义的集合运算问题是以已知的集合或运算为背景,引出新的集合概念或运算,仔细审题,弄清新定义的意义才是关键。
基本初等函数
(一) 知识定位及复习策略
基本初等函数的内容是函数的基础,也是研究其他较复杂函数的转化目标,掌握基本初等函数的图象和性质是学习函数知识的必要的一步。与指数函数、对数函数有关的试题,大多以考查基本初等函数的性质为依托,结合运算推理来解题。所以这部分内容更注重通过函数图象读取各种信息,从而研究函数的性质,熟练掌握函数图象的各种变换方式,培养运用数形结合思想来解题的能力。
(二) 规律方法总结
1、指数函数多与一次函数、二次函数、反比例函数等知识结合考查综合应用知识解决函数问题的能力。指数方程的求解常利用换元法转化为一元二次方程求解。由指数函数和二次函数、反比例函数结合成的函数的单调性的判定注意底数与1的关系的判定。
2、解对数方程(或不等式)就是将对数方程(或不等式)化为有理方程(或不等式)。要注意转化必须是等价的,特别要考虑到对数函数定义域。
高二数学必修二教案篇六
数学教学的宗旨是让学生在主动参与中学会学习。中学生的身体、心理发展正趋于成熟期,对事物充满着好奇,又有自己的想法,有时想表达自己的想法但又不愿在公开场合表达。根据这些特点,教师应设置有效的三维目标激发提升,设置贴近学生的情境激发兴趣,设置有悬念的问题激发参与,设置开放的问题激发讨论,设置有挑战的问题激发独立思考,设置抽象的问题激发理解。
进行这些设置,教师必须了解学生的现有水平和可能的发展水平,准确定位有效的教学目标;精心设置导入,在尽量短的时间内吸引学生的注意力;正确把握问题的难度、坡度和密度,让学生努力后能接近或达成目标;以适当的调控营造和谐的课堂气氛,提高学生参与的积极性。
利用信息技术拓宽学习资源
并善于独立思考,学会分析问题和创造性地解决问题”。例如,笔者在讲解解析几何内容时,就通过课件“奇妙的坐标系”向学生展示了坐标系的诞生、完善及应用过程,使数学教学成为了再创造、再发现的教学。
高二数学必修二教案篇七
一、除了高等植物成熟的筛管细胞和哺乳动物成熟的红细胞等极少数细胞外,真核细胞都有细胞核。植物的导管细胞是死细胞(主要运输水分、无机盐),筛管主要运输有机物。
二、细胞核控制着细胞的代谢和遗传。
三、细胞核的结构
2.染色质(主要由dna和蛋白质组成,dna是遗传信息的载体
4.核孔(实现核质之间频繁的物质交换和信息交流)核孔有选择透过性,上面有载体,大分子物质(蛋白质和mrna)出入细胞需要能量和载体,细胞代谢越旺盛,核孔越多,核仁体积越大。
四、细胞分裂时,细胞核解体,染色质高度螺旋化,缩短变粗,成为光学显微镜下清晰可见的圆柱状或杆状的染色体。分裂结束时,染色体解螺旋,重新成为细丝状的染色质。染色质(分裂间期)和染色体(分裂时)是同样的物质在细胞不同时期的两种存在状态。
五、细胞既是生物体结构的基本单位,又是生物体代谢和遗传的基本单位。
高二数学必修二教案篇八
在复习时,由于解题的量很大,就更要求我们将解题活动组织得生动活泼、情趣盎然。让学生领略到数学的优美、奇异和魅力,这样才能变苦役为享受,有效地防止智力疲劳,保持解题的“好胃口”。一道好的数学题,即便具有相当的难度,它却像一段引人入胜的故事,又像一部情节曲折的电视剧,那迭起的悬念、丛生的疑窦正是它的诱人之处。
“山重水复”的困惑被“柳暗花明”的喜悦取代之后,学生又怎能不赞叹自己智能的威力?我们要使学生由“要我学”转化为“我要学”,课堂上要想方设法调动学生的学习积极性,创设情境,激发热情,有这样一些比较成功的做法:一是运用情感原理,唤起学生学习数学的热情;二是运用成功原理,变苦学为乐学;三是在学法上教给学生“点金术”,等等。
在课堂教学结构上,更新教育观念,始终坚持以学生为主体,以教师为主导的教学原则
教育家苏霍姆林斯基曾经告诫我们:“希望你们要警惕,在课堂上不要总是教师在讲,这种做法不好……让学生通过自己的努力去理解的东西,才能成为自己的东西,才是他真正掌握的东西。”按我们的说法就是:师傅的任务在于度,徒弟的任务在于悟。数学课堂教学必须废除“注入式”“满堂灌”的教法。复习课也不能由教师包讲,更不能成为教师展示自己解题“高难动作”的“绝活表演”,而要让学生成为学习的主人,让他们在主动积极的探索活动中实现创新、突破,展示自己的才华智慧,提高数学素养和悟性。
作为教学活动的组织者,教师的任务是点拨、启发、诱导、调控,而这些都应以学生为中心。复习课上有一个突出的矛盾,就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。我们可采用“焦点访谈”法较好地解决这个问题,因大多数题目是“入口宽,上手易”,但在连续探究的过程中,常在某一点或某几点上搁浅受阻,这些点被称为“焦点”,其余的则被称为“外围”。我们大可不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而只要在焦点处发动学生探寻突破口,通过访谈,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。通过访谈实现学生间、师生间智慧和能力的互补,促进相互的心灵和感情的沟通。
高二数学必修二教案篇九
分离各种细胞器的方法:差速离心法
细胞膜、细胞壁、细胞核、细胞质均不是细胞器。
一、细胞器之间分工
1.线粒体:细胞进行有氧呼吸的主要场所。双层膜(内膜向内折叠形成脊),分布在动植物细胞体内。
2.叶绿体:进行光合作用,“能量转换站”,双层膜,分布在植物的叶肉细胞。
3.内质网:蛋白质合成和加工,以及脂质合成的“车间”,单层膜,动植物都有。分为光面内质网和粗面内质网(上有核糖体附着)
4.高尔基体:对来自内质网的蛋白质进行加工、分类和包装,单层膜,动植物都有,植物细胞中参与了细胞壁的形成。
5.核糖体:无膜,合成蛋白质的主要场所。生产蛋白质的机器。
包括游离的核糖体(合成胞内蛋白)和附着在内质网上的核糖体(合成分泌蛋白)
6.溶酶体:内含有多种水解酶,能分解衰老、损伤的细胞器,吞噬并杀死侵入细胞的病毒或病菌,单层膜。
溶酶体吞噬过程体现生物膜的流动性。溶酶体起源于高尔基体。
7.液泡:主要存在与植物细胞中,内有细胞液,含糖类、无机盐、色素和蛋白质等物质,可以调节植物细胞内的环境,充盈的液泡还可以使植物细胞保持坚挺。与植物细胞的渗透吸水有关。
8.中心体:动物和某些低等植物的细胞,由两个相互垂直排列的中心粒及周围物质组成,与细胞的有丝分裂有关,无膜。一个中心体有两个中心粒组成。
二、分类比较:
1.双层膜:叶绿体、线粒体(细胞核膜)
单层膜:内质网、高尔基体、液泡、溶酶体(细胞膜、类囊体薄膜)
无膜:中心体、核糖体
2.植物特有:叶绿体、液泡动物特有(低等植物):中心体
3.含核酸的细胞器:线粒体、叶绿体(dna)线粒体、叶绿体、核糖体(rna)
4.增大膜面积的细胞器:线粒体、内质网、叶绿体
5.含色素:叶绿体、液泡
6.能产生atp的:线粒体、叶绿体(细胞质基质)
7.能自主复制的细胞器:线粒体、叶绿体、中心体
8.与有丝分裂有关的细胞器:核糖体、线粒体、高尔基体(形成细胞壁)、中心体
9.发生碱基互补配对:线粒体、叶绿体、核糖体
10.与主动运输有关:核糖体、线粒体
高二数学必修二教案篇十
曾经有同学问我,你是怎么学数学的,也没见你做多少的练习题,可数学的成绩不错。我觉得课堂的学习是关键,要紧紧抓住课堂的45分钟的时间。在这有限的时间内,是教师与学生的交流,这时候,作为学生你的思维要跟得上老师的变化,这个知识点的关键点在那儿,前后的联系是什么,在听课的过程中不能分心、走神,提高听课的效率。为此,在每一堂课前,我都要做好以下几项工作。
1、课前预习是关键
相信我们学生都听到过老师对我们的要求,要进行课前预习,不论什么课,这是所有的老师都会提的一个要求,可真正进行课前预习的学生有多少呢,班里面我们也没有统计过,不过我觉得有一半的学生预习了,就是不错的了,另外,既使有的学生也预习了,只是走马观花的看一下书,那效果可想而知。
预习也要讲究方法,在预习中发现了难点,出现了自己解决不了的问题,这个就是听课中的重点,要做好标记;通过预习还能发现自己没有掌握住的旧知识,起到温故而知新的作用,可以对知识起到查漏补缺的效果;另外,预习的过程也是一个自学的过程,有助于提高自己分析问题、解决问题的能力,将自己在预习中的理解和老师讲解的进行对照,不断进行改进,可以起到提高自己思维水平的作用。
2、科学听课是保障
所谓科学听课也就是说在教师授课的过程中学生的表现,是不是为这节课做好了准备工作。在听课的过程中要调动眼、耳、心、口、手等各个器官,全身心的投入到课堂学习中去,在听课的过程中遇到重要的知识点同时又要做好笔记,但是不能因为笔记的原因而影响到听课,所以,这里面有一个科学合理安排听课时间的问题。听课的过程中是一个高度集中注意力的过程,但同时也是有张有弛;听课的过程中也的听的技巧,听教师如何分析?如何归纳总结?如何突破难点,结合自己在预习时又是如何理解的,相互比较,同时要用心思考,跟上教师的教学思路,能在教师的启发和点拨下有所得,这是这一堂课最根本的关节所在。
3、做一定量的习题
在数学的学习过程中,对于做多少习题并没有确切的数据,但有两种倾向:一种是做大量的习题;另一种是做适当的习题。做大量的习题的做法来源于题海战术,曾经有一种说法,做题吧,在做题的过程中你就掌握了知识点,诚然,多做题对于掌握知识是有好处的,但并不是题做的越多越好。在高中的学习过程中,时间非常紧,在有限的时间内要学习好几门知识,你数学题做的多了,难免会在其他科目上用时不够,会对其他科目的学习造成影响。因此,大量的做题是不可取的。
在学习的过程中,我崇尚做适当的习题,而且在实际的学习过程中我也是这样做的。做题的过程中是一个举一反三的过程,做会这一道题就掌握了这一类题目的做法,关键的问题是在做完这道题后的分析总结,数学的题目太多了,你是不可能做完所有的题的,因此,我们在掌握知识点的时候是一类一类的掌握,所谓的举一反三,触类旁通。每当做完一道题后尤其是难度大的题目,我会静下心来再从头看一遍,把其中的关键点再熟悉一遍,虽然当时看起来是费了一点时间,但那收获是很大的。以后再遇到这类题目的时候,解决起来就相对容易的多。
高二数学必修二教案篇十一
三、在细胞质中,除了细胞器外,还有呈胶质状态的细胞质基质。
细胞质:包括细胞器和细胞质基质
四、电子显微镜下看到的是亚显微结构,普通显微镜下看到显微结构。
光镜能看到:细胞质,线粒体,叶绿体,液泡,细胞壁
实验:用高倍显微镜观察叶绿体和线粒体
健那绿染液是将活细胞中线粒体染色的专一性染料,可以使活细胞中的线粒体呈现蓝绿色。
材料:新鲜的藓类的叶(叶片薄,直接观察)
菠菜叶稍带叶肉的下表皮(上表皮起保护作用,几乎无叶绿体;下表皮海绵组织,有气孔保卫细胞,有叶绿体)
五、分泌蛋白的合成和运输
有些蛋白质是在细胞内合成后,分泌到细胞外起作用,这类蛋白叫分泌蛋白。如消化酶(催化作用)、抗体(免疫)和一部分激素(信息传递)
核糖体内质网高尔基体细胞膜
(合成肽链)(加工成蛋白质)(进一步加工)(囊泡与细胞膜融合,蛋白质释放)
分泌蛋白从合成至分泌到细胞外利用到的细胞器?
答:核糖体、内质网、高尔基体、线粒体
分泌蛋白从合成至分泌到细胞外利用到的结构?
核糖体、内质网、高尔基体、线粒体、细胞核、囊泡、细胞膜
六、生物膜系统
1、概念:细胞膜、核膜,各种细胞器的膜共同组成的生物膜系统
2、作用:使细胞具有稳定内部环境物质运输、能量转换、信息传递;为各种酶提供大量附着位点,是许多生化反应的场所;把各种细胞器分隔开,保证生命活动高效、有序进行。
3、内质网膜内连核膜外连细胞膜还和线粒体膜直接相连。
经过囊泡与高尔基体膜间接相连。
高二数学必修二教案篇十二
集合这部分的主要内容是集合的概念、表示方法和集合之间的关系和运算。纵观近几年高考题,集合的考查以选择题、填空题为主要题型。集合的概念和基本运算是本章的重点内容,也是高考的必考内容。 复习中首先要把握基础知识,深刻理解本章的基础知识点,重点掌握集合的概念和运算。
本章常用的数学思想方法主要有:数形结合的思想,如常借助于维恩图、数轴解决问题;分类讨论的思想,如一元二次方程根的讨论、集合的包含关系等。复习时要重视对基本思想方法的渗透,逐步培养用数学思想方法来分析问题、解决问题的能力。
函数
函数是高中数学的核心内容,函数的思想方法贯穿了高中数学的始终。近几年高考试题函数热点之一是考查函数的定义域、值域、单调性、奇偶性以及函数的图象。函数、方程、不等式关系密切,要学会对具体问题抽象概括、分析探索、透彻理解,从而构造函数,借助方程、不等式的知识,最终解决问题。实现函数、方程、不等式的沟通与转化,是高考的又一热点。考查函数内容的同时,用函数的思想观点研究问题,以及数形结合思想、分类讨论思想的灵活熟练应用,也是高考的一个重点。
规律方法总结
求函数解析式时,针对条件的特点可选用换元法、待定系数法、凑项法、列方程组法等进行求解。其中换元法是常用的方法,但要特别注意正确确定中间变量的取值范围,否则就不能正确确定函数的定义域。 判断函数单调性主要的方法有定义法、导数法、图象法。
高二数学必修二教案篇十三
根据德国心理学家艾宾浩斯绘制的遗忘曲线,学生对知识的遗忘遵从先快后慢的规律,有效的回忆可以加深对知识的理解,掌握知识的内在联系,延缓知识的遗忘。教师要采用不同的形式,整理阶段的基础知识,使内容条理化、清晰化地呈现在同学的面前,从而完成由厚到薄的过程,对重难点和关键点,进行重点的、有针对性的讲解。配以适当的练习,提高学生对基本知识和基本方法的深刻性和准确性的理解掌握。促进学生科学合理的知识结构的形成,使知识系统化和网络化。
旧知检测
要想有效的提高课堂的复习效率,就须克服“眼高手低”的毛病。很多同学上课时处于一种混沌的状态,一听就懂,一做就错;一听就会,一到自己做就不会了。为避免这样的情况,就必须让学生更好地了解自己知识的掌握情况。可以设置几个基础的填空和一个左右的解答题,通过解答的过程让学生“自知自明”。激发起兴趣,有效地提高复习的效率。
精选精讲
精心的选择适量的典型例题,分析解决这些问题应该是一堂复习课的核心内容。解题的目的绝不是仅仅解决这个问题本身,而是要给出通性通法,揭示解决问题的一般规律,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。
高二数学必修二教案篇十四
对重点内容应重点复习.首先拟出主要内容,然后有目的有针对性地做相关内容的题目,着重收集主要题型和技巧解法,像小论文式地重组知识,不要盲目地做题,要有针对性地选题,回味练习.
重视高中数学中的基本方法
高考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法、换元法、分离常数法等操作性较强的数学方法.同学们在复习时应对每一种方法的实质,它所适应的题型,包括解题步骤都熟练掌握.其次应重视对数学思想的理解及运用,如函数思想、数形结合思想.
应注意实际问题的解决和探索性试题的研究
现在各地风行素质教育,呼吁改革考试命题.增强运用数学知识解决实际问题的试题,在其他省市的高考命题中已经体现,而且难度较大,这一部分尤其是探索性命题在平时学习中较少涉及,希望同学们把近几年其他省、市高考试题中有关此内容的题目集中研究一下,有备无患.这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力.
高二数学必修二教案篇十五
教学准备
教学目标
o 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。
o 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。
o 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力。
教学重难点
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。
教学难点:平行向量、相等向量和共线向量的区别和联系。
教学过程
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材p74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点o,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
课后小结
1、 描述向量的两个指标:模和方向。
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
高二数学必修二教案篇十六
各位老师大家好!
我说课的内容是人教版a版必修2第三章第一节直线的倾斜角与斜率第一课时。
(一)教材分析
本节课选自必修2第三章(解析几何的第一章)第一节直线的倾斜角与斜率第一课时,直线的倾斜角和斜率解析几何的重要概念;是刻画直线倾斜程度的几何要素与代数表示;学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以解析法的方式来研究直线相关性质,而本节课直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节课也初步向学生渗透解析几何的基本思想和基本方法。因此,本课有着开启全章、渗透方法,承前启后的作用。
(二)学情分析
本节课的教学对象是高二学生,这个年龄段的学生天性活泼,求知欲强,并且学习主动,在知识储备上知道两点确定一条直线,知道点与坐标的关系,实现了最简单的形与数的转化;了解刻画倾斜程度可用角和正切值;具备了一定的数形结合的能力和分类讨论的思想。但根据学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。所以在教学设计时需从学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、巩固和应用过程。
(三)教学目标
1.理解直线的倾斜角和斜率的概念,理解直线的倾斜角的唯一性和斜率的存在性;
2.掌握过两点的直线斜率的计算公式;
3.通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括能力;
生严谨求简的数学精神。
重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
难点:直线的倾斜角与斜率的概念的形成,斜率公式的构建。
(四)教法和学法
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情景,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效的渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的教学原则,考虑到学生首次接触解析几何的内容及研究方法,所以我采用设置问题串的形式,启发引导学生类比、联想,产生知识迁移;通过几何画板演示实验、探索交流相结合的教学方法激发学生观察、实验,体验知识的形成过程;由此循序渐进,使学生很自然达到本节课的学习目标。
(五)教学过程
环节1.指明研究方向(3min)
简介17世纪法国数学家笛卡尔和费马的数学史。
标签: