说说网:经典说说美文,带给您最深的感动。

标签聚合| 最新说说| 网站地图

搜索
分类
当前分类:

思想汇报

最新高二数学必修二教案(汇总8篇)

日期:2024-12-16 10:55:21人气:下载文档docx

导读:作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么我们该如何写一篇较为完美的教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。高二数学必修二教案篇一教学目标1、知识与技能(1)推广角的概念、引入大于...

作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。那么我们该如何写一篇较为完美教案呢?以下是小编为大收集的教案范文,仅供参考,大家一起来看看吧。

高二数学必修二教案篇一

教学目标

1知识与技能

(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题景,激发学生分析、探求的学习态度,强化学生的参与意识.

2、过程与方法

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.

3、情态与价值

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识物.

教学重难点

重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.

难点:终边相同的角的表示.

教学工具

投影仪等.

教学过程

【创设情境】

思考:你的表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25

小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.

【探究新知】

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点.

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

8.学习小结

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合.

五、评价设计

1.作业:习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

课后小结

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合.

课后习题

作业:

1、习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

高二数学必修二教案篇二

1、进一步理解和掌握数列的有关概念和性质;

2、在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力

3、进一步提高问题探究意识、知识应用意识和同伴合作意识。

问题的提出与解决

如何进行问题的探究

启发探究式

1、数列{an}是一个等比数列,可以从等比数列角度来进行研究;

2、研究所给数列的项之间的关系;

3、研究所给数列的子数列;

4、研究所给数列能构造的新数列;

5、数列是一种特殊的函数,可以从函数性质角度来进行研究;

6、研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

1、研究一个数列可以从哪些方面提出问题并进行研究?

2、你最喜欢哪位同学的研究?为什么?

高二数学必修二教案篇三

【自主梳理】

1、对数:

(1)一般地,如果,那么实数叫做________________,记为________,其中叫做对数的_______,叫做________.

(2)以10为底的对数记为________,以为底的对数记为_______.

(3),.

2、对数的运算性质:

(1)如果,那么,

(2)对数的换底公式:.

3、对数函数:

一般地,我们把函数____________叫做对数函数,其中是自变量,函数的定义域是______.

4、对数函数的图像与性质:

a10

图象性

质定义域:___________

值域:_____________

过点(1,0),即当x=1时,y=0

x(0,1)时_________

x(1,+)时________x(0,1)时_________

x(1,+)时________

在___________上是增函数在__________上是减函数

【自我检测】

1.的定义域为_________.

2、化简:.

3、不等式的解集为________________.

4、利用对数的换底公式计算:.

5、函数的奇偶性是____________.

6、对于任意的,若函数,则与的大小关系是___________________________.

【例1】填空题:

(1).

(2)比较与的'大小为___________.

(3)如果函数,那么的最大值是_____________.

(4)函数的奇偶性是___________.

【例2】求函数的定义域和值域。

【例3】已知函数满足.

(1)求的解析式;

(2)判断的奇偶性;

(3)解不等式.

课堂小结

1..略

2、函数的定义域为_______________.

3、函数的值域是_____________.

4、若,则的取值范围是_____________.

5、设则的大小关系是_____________.

6、设函数,若,则的取值范围为_________________.

7、当时,不等式恒成立,则的取值范围为______________.

8、函数在区间上的值域为,则的最小值为____________.

9、已知.

(1)求的定义域;

(2)判断的奇偶性并予以证明;

(3)求使的的取值范围。

10、对于函数,回答下列问题:

(1)若的定义域为,求实数的取值范围;

(2)若的值域为,求实数的取值范围;

(3)若函数在内有意义,求实数的取值范围。

四、纠错分析

错题卡题号错题原因分析

【自主梳理】

1、对数

(1)以为底的的对数,,底数,真数。

(2),.

(3)0,1.

2、对数的运算性质

(1),,.

(2).

3、对数函数

,.

4、对数函数的图像与性质

a10

图象性质定义域:(0,+)

值域:r

过点(1,0),即当x=1时,y=0

x(0,1)时y0

x(1,+)时y0x(0,1)时y0

x(1,+)时y0

在(0,+)上是增函数在(0,+)上是减函数

1.2.3.

4.5.奇函数6..

【例1】填空题:

(1)3.

(2).

(3)0.

(4)奇函数。

【例2】解:由得.所以函数的定义域是(0,1)。

因为,所以,当时,,函数的值域为;当时,,函数的值域为.

【例3】解:(1),所以.

(2)定义域(-3,3)关于原点对称,所以

,所以为奇函数。

(3),所以当时,解得

当时,解得.

高二数学必修二教案篇四

1、掌握常用基本不等式,并能用之证明不等式和求最值;

2、掌握含绝对值的不等式的性质;

本章知识点

几类常见的问题

(一)含参数的不等式的解法

例1解关于x的不等式。

例2解关于x的不等式。

例3解关于x的不等式。

例4解关于x的不等式

例5满足的x的集合为a;满足的x

的集合为b1若ab求a的取值范围2若ab求a的取值范围3若ab为仅含一个元素的集合,求a的值。

(二)函数的最值与值域

例6求函数的最大值,下列解法是否正确?为什么?

解一:,

解二:当即时,

例7若,求的最值。

例8已知x,y为正实数,且成等差数列,成等比数列,求的取值范围。

例9设且,求的最大值

例10函数的最大值为9,最小值为1,求a,b的值。

1、

2、,若,求a的取值范围

3、

4、

5、当a在什么范围内方程:有两个不同的负根

6、若方程的两根都对于2,求实数m的范围

7、求下列函数的最值:

1

2

8.1时求的最小值,的最小值

2设,求的最大值

3若,求的最大值

4若且,求的最小值

9、若,求证:的最小值为3

10、制作一个容积为的圆柱形容器(有底有盖),问圆柱底半径和

高各取多少时,用料最省?(不计加工时的损耗及接缝用料)

高二数学必修二教案篇五

2、2、3直线的参数方程

学习目标

1.了解直线参数方程的条件及参数的意义;

2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习过程

复习:

1、若由共线,则存在实数,使得,

2、设为方向上的,则=︱︱;

3、经过点,倾斜角为的直线的普通方程为。

探究新知(预习教材p35~p39,找出疑惑之处)

1、选择怎样的参数,才能使直线上任一点m的坐标与点的坐标和倾斜角联系起来呢?由于倾斜角可以与方向联系,与可以用距离或线段数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

如图,在直线上任取一点,则=,

而直线

的单位方向

向量

=(,)

因为,所以存在实数,使得=,即有,因此,经过点

,倾斜角为的直线的参数方程为:

2.方程中参数的几何意义是什么?

应用示例

例1.已知直线与抛物线交于a、b两点,求线段ab的长和点到a,b两点的距离之积。(教材p36例1)

解:

例2.经过点作直线,交椭圆于两点,如果点恰好为线段的中点,求直线的方程。(教材p37例2)

解:

反馈练习

1.直线上两点a,b对应的参数值为,则=()

a、0b、

c、4d、2

2.设直线经过点,倾斜角为,

(1)求直线的参数方程;

(2)求直线和直线的交点到点的距离;

(3)求直线和圆的两个交点到点的距离的和与积。

本节小结

1.本节学习了哪些内容?

答:1.了解直线参数方程的条件及参数的意义;

2.初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

学习评价

一、自我评价

你完成本节导学案的情况为()

a.很好b.较好c.一般d.较差

课后作业

1.已知过点,斜率为的直线和抛物线相交于两点,设线段的中点为,求点的坐标。

2.经过点作直线交双曲线于两点,如果点为线段的中点,求直线的方程

3.过抛物线的焦点作倾斜角为的弦ab,求弦ab的长及弦的中点m到焦点f的距离。

高二数学必修二教案篇六

教学目标

1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

归纳——猜想——证明的数学研究方法;

3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

难点:等比数列的性质的探索过程。

教学过程

教学过程:

1、问题引入:

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今要研究的等比数列了。)

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。-

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.

(本题为开放题,没有的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:

p129:1,2,3

教学设计说明:

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;

2)等比数列的通项公式的推导;

3)等比数列的性质;

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的-,通过类比

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

高二数学必修二教案篇七

1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。

体会直角坐标系的作用。

能够建立适当的直角坐标系,解决数学问题。

新授课

启发、诱导发现教学。

多媒体、实物投影仪

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴它使直线上任一点p都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点p都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点p都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学运用

例1选择适当的。平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

变式训练

2在面积为1的中,,建立适当的坐标系,求以m,n为焦点并过点p的椭圆方程

例3已知q(a,b),分别按下列条件求出p的坐标

(1)p是点q关于点m(m,n)的对称点

(2)p是点q关于直线l:x-y+4=0的对称点(q不在直线1上)

变式训练

用两种以上的方法证明:三角形的三条高线交于一点。

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2.利用平面直角坐标系解决相应的数学问题。

六、课后作业:

高二数学必修二教案篇八

熟练掌握三角函数式的求值

熟练掌握三角函数式的求值

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

三角函数式的求值的类型一般可分为:

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次

注意点:灵活角的变形和公式的变形

重视角的范围对三角函数值的影响,对角的范围要讨论

课堂小结】

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

三角函数式的求值的类型一般可分为:

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次

注意点:灵活角的变形和公式的变形

重视角的范围对三角函数值的影响,对角的范围要讨论

标签:

标签聚合| 最新说说| 网站地图

Copyright © 2000-2023 说说网 版权所有 备案号:琼ICP备2022010524号

声明: 本站所有图片和文章来自互联网 如有异议 请与本站联系。 本站为个人非盈利网站 不接受任何赞助和广告。