日期:2024-10-20 19:50:21人气:下载文档docx
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧 勾股定理的说课稿北师大版篇一勾股定理就就是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它就就是直角三角形的一条非常重要的性质,就就是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,就就是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。 据此,制定教学目标如下: 1、理解并掌握勾股定理及其证明。 2、能够灵活地运用勾股定理及其计算。 3、培养学生观察、比较、分析、推理的能力。 4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。 教学重点:勾股定理的证明和应用。 教学难点:勾股定理的证明。 教法和学法就就是体现在整个教学过程中的,本课的教法和学法体现如下特点: 1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。 本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下: (一)创设情境 以古引新 1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾就就是3,股就就是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。 2、就就是不就就是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。 3、板书课题,出示学习目标。 (二)初步感知 理解教材 教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。 (三)质疑解难 讨论归纳 1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。 2、教师引导学生按照要求进行拼图,观察并分析; (1)这两个图形有什么特点? (2)你能写出这两个图形的面积吗? (3)如何运用勾股定理?就就是否还有其他形式? 这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。 (四)巩固练习 强化提高 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。 2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。 (五)归纳总结 练习反馈 引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的`师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。 勾股定理的说课稿北师大版篇二(一)教材分析 本节内容选自人教版八年级数学下册第17章第二节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判定定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法来证明几何问题的思想,为将来学习解析几何埋下了伏笔。 (二)教学目标 根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。 知识技能: 理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。 掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。 了解逆命题的概念,以及原命题为真时,它的逆命题不一定为真。 过程方法: 1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程 2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用 3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。 情感态度: (三)学情分析 重点:勾股定理逆定理的应用 难点:勾股定理逆定理的证明 数学课程不仅注重知识、技能,以及情感意识和创造力的培养,同样注重社会实践和体验,教学要遵循以教师为主导,学生为主体的原则,因此我采用的教法学法如下: 在教学中以小组合作,自主探索为形式,采用“提问引导法”,通过“提出疑问”来启发诱导学生,让学生自觉主动地去分析问题、解决问题,学生在操作过程中不断“发现问题——解决问题”,变学生“学会”为“会学”.这样不仅使学生学习目标明确,而且能够培养他们的合作精神和自主学习的能力。根据学法指导自主性和差异性原则,本节我主要采用自主探究学习法,通过设计一系列问题,引导学生主动探究新知,体现学习自主性,从不同层面发掘不同学生的不同能力。 1、多媒体教学课件 2、纸片、直尺、圆规等 3、对学生事先分组 根据本课教学内容以及数学课程学科特点,结合八年级学生的实际认知水平,我设计了如下六个教学环节: (一)复习提问、引入新课 问题1:前面我们学习了勾股定理,你能说出它的题设和结论吗? 问题2:若一个三角形三边具有a2+b2=c2,能否确定这个三角形是直角三角形? (二)动手操作、观察猜想 探究一:分组做实验 第一组同学每人画一个边长为3cm、4 cm、5 cm的三角形; 第二组同学每人画一个边长为2.5 cm、6 cm、7.5 cm的三角形; 第三组同学每人画一个边长为4 cm、7.5 cm、8.5 cm的三角形; 第四组同学每人画一个边长为2 cm、5 cm、6 cm的三角形。 问题1:观察这些三角形,它们分别是什么形状呢?并测量验证 问题2:前三个三角形三边具有怎样的关系呢? 学生活动:动手、观察、测量、思考、猜想 设计意图:由特殊到一般,归纳猜想得出勾股定理的逆命题,既培养学生动手操作能力和寻求解决数学问题的一般方法,又体验了数与形的内在联系。 (三)实践验证,归纳证明 教师出示问题 问题1:对于一个真命题,它的逆命题是否也为真?学生举例说明。 勾股定理的逆命题是否也正确?怎么证明? 问题2:三边长度分别3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系,你是怎样得到的?(出示纸片) 问题3:你能否借鉴问题2的方法来证明勾股定理的逆命题呢? 学生活动:观察思考,动手操作,分组讨论,交流合作(教师引导学生主动探索,在师生互动中完成证明,得到勾股定理的逆定理) 设计意图:把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点。 勾股定理的说课稿北师大版篇三何老师是一位拥有丰富初中教学经验的老师,上周有幸听了何老师执教《勾股定理》一课,由于本人不熟悉初中的教学,因此心中产生了一些疑问,在此和大家一起共同探讨。 第一,勾股定理是初等几何中的一个基本定理。这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明兴趣未减,热衷于用不同的方法来证明这个定理,根据不完全统计到目前为止,证明勾股定理的方法不下一百种。 何老师根据七年级的现有知识基础水平,选择了利用面积法进行证明,先探索特殊三角形—等腰直角三角形的情形,再推广为一般直角三角形的情形。然而这两个证明的过程都借助了方格纸来确认边长的数据,使整个证明的过程都在具体的面积计算过程中完成的。证明的方法、渠道比较单一。 用不同的方法来证明勾股定理,就和人们追求计算更加精确的圆周率的原因是相似的。虽然圆周率只取小数点后两位已足以满足计算需要,但人们在探索更精确计算方法的时候可以引发新的概念和思想,拓宽解决问题的思维和思路。因此证明勾股定理只停留在一种证明方法上,不利于拓宽学生的思路。 因此,我认为探索勾股定理证明方法的思路可以更开阔;证明的过程要更加一般化,让学生探索不确定直角三角形的各边数据的情况下,去证明勾股定理成立。还可以让学生动手实践,用全等三角形拼图辅助于符号计算的方法来证明勾股定理。 第二,何老师在体会勾股定理的用处这个环节,一共选择了3个例题。 1、蜗牛沿折线爬行,求蜗牛爬行距离的习题。这一题是很经典的勾股定理练习题。学生在方格纸上构造直角三角形,再应用勾股定理来解答。 2、小鸟从高树枝飞到低树枝,求飞行距离。这一题需要添加辅助线,构造直角三角形来应用勾股定理。 3、求甲乙两船的相距距离。在此题中,两条船航线成90度这个条件是隐藏在文字描述和示意图中的,而且三角形的边长数据也是需要学生自己去计算的。 可以看出这些题目呈现出思维难度提高的梯度,但从学生的课堂反应中感受不到学生学以致用的成就感和征服难题的兴奋雀跃的心情。因此,我在想,是否对第一、二题加以修改使之更贴近生产生活。这样就会更好地调动学生解题的积极性。 由于本人不了解七年级学生的实际学习水平,也不了解初中教学情况,很有可能误解何老师如此安排教学的良苦用心。以上意见纯属纸上谈兵的一家之言,若有不当之处,还请何老师和各位同仁多多包涵。 勾股定理的说课稿北师大版篇四勾股定理是我国古数学的一项伟大成就.勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面.教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用. 据此,制定教学目标如下: 1.知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解. 2.过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的. 3.情感与态度目标:感受数学在生活中的应用,感受数学定理的美. 教学重点:勾股定理的应用. 教学难点:勾股定理的正确使用. 教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理. 1.以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程. 2.切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力. 3.通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望. 教学程序本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下: 回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用. 勾股定理的说课稿北师大版篇五3月22日,在学校理科教研组的组织安排下,我组全体教师观摩了柏老师的八年级数学课——《勾股定理的应用》。 作为一名上岗不到两年的年轻教师,柏老师的进步非常大。这节课中,表现出的优点有如下几点: 1、教师对教材吃的透,对教学内容理得清,教学设计思路清晰,重难点突出,教学环节齐全,有讲有练。 2、在教学中注重对学生的引导、启迪,且讲授详细。 3、板书美观,能展现课堂教学的重难点。 4、在新授前能给学生出示本节课的学习目标,让学生明确本节课的学习任务,在后面的学习中能做到有的放矢。 当然,本节课也有一些美中不足的地方和值得探讨的问题,如: 1、未在预定时间内完成教学内容,造成拖堂现象。 2、教师在问题的引导上包办过多,用自己的讲授代替了学生的自主思考。 3、本节课有尺规作图内容,但教师未在课前提醒学生准备作图工具,因此课堂上出现了个别同学“闲坐”的现象。 4、值得探讨的问题:课本上有的练习题在课件制作时有无必要做成幻灯片。 总体来说,柏老师是这一节课是比较成功的,是值得我们观摩学习的。 标签: |
下一篇:绵山导游词(精选8篇)
Copyright © 2000-2023 说说网 版权所有 备案号:琼ICP备2022010524号
声明: 本站所有图片和文章来自互联网 如有异议 请与本站联系。 本站为个人非盈利网站 不接受任何赞助和广告。