日期:2024-07-02 09:24:08人气:下载文档docx
总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。写总结的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家带来的总结书优秀范文,希望大家可以喜欢。 等差数列知识点归纳总结篇一数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。 一、片头 (30秒以内) 前面学习了数列的概念与简单表示法,今天我们来学习一种特殊的数列-等差数列。本节微课重点讲解等差数列的定义, 并且能初步判断一个数列是否是等差数列。 30秒以内 二、正文讲解(8分钟左右) 第一部分内容:由三个问题,通过判断分析总结出等差数列的定义 60 秒 第二部分内容:给出等差数列的定义及其数学表达式50 秒 三、结尾 (30秒以内)授课完毕,谢谢聆听!30秒以内 本节课通过生活中一系列的实例让学生观察,从而得出等差数列的概念,并在此基础上学会判断一个数列是否是等差数列,培养了学生观察、分析、归纳、推理的能力。充分体现了学生做数学的过程,使学生对等差数列有了从感性到理性的认识过程。 等差数列知识点归纳总结篇二2、利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想; 3、通过参与编题解题,激发学生学习的兴趣。 教学重点是通项公式的认识; 教学难点是对公式的灵活运用. 实物投影仪,多媒体软件,电脑。 研探式。 一。复习提问 等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。 二。主体设计 通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求 )。找学生试举一例如:“已知等差数列 中,首项 ,公差 ,求 。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。 1、方程思想的运用 (1)已知等差数列 中,首项 ,公差 ,则-397是该数列的第 项。 (2)已知等差数列 中,首项 , 则公差 (3)已知等差数列 中,公差 , 则首项 这一类问题先由学生解决,之后教师点评,四个量 , 在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。 2、基本量方法的使用 (1)已知等差数列 中, ,求 的值。 (2)已知等差数列 中, , 求 。 若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和 , 和 称作基本量。 教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。 如:已知等差数列 中, … (3)已知等差数列 中, 求 ; ; ; ;…。 类似的还有 (4)已知等差数列 中, 求 的值。 以上属于对数列的项进行定量的研究,有无定性的判断?引出 4、研究项的符号 这是为研究等差数列前 项和的最值所做的准备工作。可配备的题目如 (1)已知数列 的通项公式为 ,问数列从第几项开始小于0? (2)等差数列 从第 项起以后每项均为负数。 三。小结 1、 用方程思想认识等差数列通项公式; 2、 用函数思想解决等差数列问题。 等差数列知识点归纳总结篇三2、利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想; 3、通过参与编题解题,激发学生学习的兴趣。 教学重点是通项公式的认识; 教学难点是对公式的灵活运用. 实物投影仪,多媒体软件,电脑。 研探式。 一。复习提问 等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。 二。主体设计 通项公式反映了项与项数之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知求)。找学生试举一例如:“已知等差数列中,首项,公差,求。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。 1、方程思想的运用 (1)已知等差数列中,首项,公差,则-397是该数列的第项。 (2)已知等差数列中,首项,则公差 (3)已知等差数列中,公差,则首项 这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。 2、基本量方法的使用 (1)已知等差数列中,,求的值。 (2)已知等差数列中,,求。 若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于和的二元方程组,所以这些等差数列是确定的,由和写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于和的二元方程组,以求得和,和称作基本量。 教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于和的二元方程,这是一个和的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。 如:已知等差数列中,… (3)已知等差数列中,求;;;;…。 类似的还有 (4)已知等差数列中,求的值。 以上属于对数列的项进行定量的研究,有无定性的判断?引出 4、研究项的符号 这是为研究等差数列前项和的最值所做的准备工作。可配备的题目如 (1)已知数列的通项公式为,问数列从第几项开始小于0? (2)等差数列从第项起以后每项均为负数。 三。小结 1、用方程思想认识等差数列通项公式; 2、用函数思想解决等差数列问题。 等差数列知识点归纳总结篇四问题2:1+2+3+…+n=? 设=1+2+3+…+n,又有=+++…+1 =+++…+,得= 问题3:等差数列=? 问题4:还有新的方法吗? ==(这里应用了问题2的结论) 问题5:==? 学生容易从问题4中得到联想:==。显然,这又是一个等差数列的求和公式。 等差数列的求和对初学数列求和的离学生的现有发展水平较远,教师通过“弱化”的问题1和问题2将问题转化到学生的最近发展区内,由于学生的最近发展区是不断变化的,学生解决了问题2,就说明学生的潜在的发展水平已经转化为其新的现有发展水平,在新的现有发展水平基础上教师提出了问题3,学生解决了问题3,他们潜在的发展水平已经转化为其新的现有发展水平,在此基础上教师提出了问题4,这个案例的设计体现教师搭“脚手架”的作用不可低估,教师自始至终都应坚持“道而弗牵,强而弗抑,开而弗达”(《礼记·学记》),诱导学生自己探究数学结论,处理好“放”与“扶”的关系。 等差数列知识点归纳总结篇五一、教学目标: 1、知识与技能 (1)初步掌握一些特殊数列求其前n项和的常用方法. (2)通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分析问题的能力,转化的数学思想以及数学运算能力。 2、过程与方法 培养学生分析解决问题的能力,归纳总结能力,以及数学运算的能力。 通过教学,让学生认识到事物是普遍联系,发展变化的。 二、教学重点: 把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和 三、教学难点: 寻找适当的变换方法,达到化归的目的 四、教学过程设计 复习引入: (1)1+2+3+……+100= (2)1+3+5+……+2n-1= (3)1+2+4+……+2《数列求和》教学设计及反思= (4)《数列求和》教学设计及反思= 设计意图: 让学生回顾旧知,由此导入新课。 [教师过渡]:今天我们学习《数列求和》第二课时,课标要求和学习内容如下:(多媒体课件展示) 导入新课: [情境创设](课件展示): 例1:求数列《数列求和》教学设计及反思,…的前《数列求和》教学设计及反思项和 分析:将各项分母通分,显然是行不通的,启发学生能否通过通项的特点,将每一项拆成两项的差,使它们之间能互相抵消很多项。 [问题生成]:请同学们观察否是等差数列或等比数列? [特别警示]利用裂项相消求和方法时,抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,才能使裂开的两项差与原通项公式相等. 变式训练: 说明:例题引伸是教学中常做的一件事,它可以使学生的认识得到“升华”, 发展学生的思维,并起到触类旁通,举一反三的效果 【小结】裂项的目的是为使部分项相互抵消.大多数裂项相消的通项均可表示为bn=《数列求和》教学设计及反思,其中{《数列求和》教学设计及反思}是公差d不为0的等差数列,则《数列求和》教学设计及反思《数列求和》教学设计及反思) 标签: |
Copyright © 2000-2023 说说网 版权所有 备案号:琼ICP备2022010524号
声明: 本站所有图片和文章来自互联网 如有异议 请与本站联系。 本站为个人非盈利网站 不接受任何赞助和广告。