说说网:经典说说美文,带给您最深的感动。

标签聚合| 最新说说| 网站地图

搜索
分类
当前分类:

读后感

高一必修四数学课后题答案人教版 高一数学必修教案(优质5篇)

日期:2024-12-16 10:55:36人气:下载文档docx

导读:在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。高一必修四数学课后题答案人教版篇一教学准备教学目标掌握三角函数模型应用基本步骤:(...

在日常学习工作生活中,肯定对各类范文都很熟悉吧。大想知道怎么样才能写一篇比较优质的范文吗?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。

高一必修四数学课后题答案人教版篇一

教学准备

教学目标

掌握三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关简单函数模型。

教学重难点

.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

教学过程

一、练习讲解:《习案》作业十三的第3、4题

(精确到0.001).

米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的

本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。

练习:教材p65面3题

三、小结:1、三角函数模型应用基本步骤:

(1)根据图象建立解析式;

(2)根据解析式作出图象;

(3)将实际问题抽象为与三角函数有关的简单函数模型。

2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。

四、作业《习案》作业十四及十五。

高一必修四数学课后题答案人教版篇二

1、了解函数的单调性和奇偶性的概念,把握有关证实和判定的基本方法

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。

(2)能从数和形两个角度熟悉单调性和奇偶性。

(3)能借助图象判定一些函数的单调性,能利用定义证实某些函数的单调性;能用定义判定某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。

2、通过函数单调性的证实,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从非凡到一般的数学思想。

3、通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。

一、知识结构

(1)函数单调性的概念。包括增函数。减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系

(2)函数奇偶性的概念。包括奇函数。偶函数的定义,函数奇偶性的判定方法,奇函数。偶函数的图像。

二、重点难点分析

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与熟悉。教学的难点是领悟函数单调性,奇偶性的本质,把握单调性的证实。

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证实是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证实,也没有意识到它的重要性,所以单调性的证实自然就是教学中的难点。

三、教法建议

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性熟悉出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的熟悉就可以融入其中,将概念的形成与熟悉结合起来。

(2)函数单调性证实的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,非凡是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较轻易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。

高一必修四数学课后题答案人教版篇三

1.2.1投影与三视图

课型

新课

教学目标

1、了解中投影和平行投影的概念;

3、简单组合体与其三视图之间的相互转化。

教学过程

教学内容

备注

一、

自主学习

1、照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识。

二、

质疑提问

下图中的游戏,你玩过吗?

光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影。其中的光线叫做投影线,留下物体影子的屏幕叫做投影面。

一、中心投影与平行投影

思考2:用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?

投影的分类:

把一个空间几何体投影到一个平面上,可以获得一个平面图形。从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面,并给出下列概念:

正视图:光线从几何体的前面向后面正投影,得到的投影图。

侧视图:光线从几何体的左面向右面正投影,得到的投影图。

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

几何体的'正视图、侧视图和俯视图,统称为几何体的三视图。

三、

问题探究

思考2:如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?

思考3:圆柱、圆锥、圆台的三视图分别是什么?

思考5:球的三视图是什么?下列三视图表示一个什么几何体?

例1:如图是一个倒置的四棱柱的两种摆放,试分别画出其三视图,并比较它们的异同。

四、

课堂检测

五、

小结评价

1、空间几何体的三视图:正视图、侧视图、俯视图;

3、三视图的应用及与原实物图的相互转化。

高一必修四数学课后题答案人教版篇四

教学准备

教学目标

o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量。

o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别。

o通过学生对向量与数量的识别能力的训练,培养学生认识客观物的数学本质的能力。

教学重难点

教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。

教学难点:平行向量、相等向量和共线向量的区别和联系。

教学过程

(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)(教材p74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)

1、数量与向量有何区别?(数量没有方向而向量有方向)

2、如何表示向量?

3、有向线段和线段有何区别和联系?分别可以表示向量的什么?

4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?

5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?

6、有一组向量,它们的方向相同或相反,这组向量有什么关系?

7、如果把一组平行向量的起点全部移到一点o,这是它们是不是平行向量?

这时各向量的终点之间有什么关系?

课后小结

1、描述向量的两个指标:模和方向。

2、平面向量的概念和向量的几何表示;

3、向量的模、零向量、单位向量、平行向量等概念。

高一必修四数学课后题答案人教版篇五

一、创设景,激趣导入。

学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。

二、探究体验,经历过程。

1、教学例1.

方法一:

师:学校准备从每个班中选几名热运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。

学生可能回答;

一共有17人,9+8=17(人)。

可是,参加这两项活动的没有17人呀。

我发现有的人两项活动都参加了。

应该是一共有14人参加了,算式是9+8-3=14(人)。

??

师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢?

生:因为有3个人重复了。

生:因为这3个人既参加了跳绳,又参加了踢毽。

生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。

生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。

师:同学们的发言真是精彩,报名参加校体育训练的一共有多少名同

学呢?

生:14人。

方法二:

师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的`14名同学分别对应的替代其中一人,自己选一个替代的对象吧。

班内的14名学生分别选定自己要替代的人。

生:不知道站哪边。

师:哦?为什么?怎么会出现这样的情况呢?

生:站中间。

三位同学都站到了讲台的中间。

师:那左边、右边、中间分别表示什么?

生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。

方法三:

师:谁能用画图的方法来表示一下刚才看到的情形?

学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。

分组展示自己设计的图画,并介绍自己的创意或想法。

学生可能会说:

生1:我觉得左边的同学是代表参加跳绳的,应该圈在一起;右边的同学代表参加踢毽的,他们也应该圈在一起;中间的同学再画一个圈。师:这样的,能不能让大家一看就知道中间的是既参加了跳绳的,又参加了踢毽的呢?再想想,看还有没有更好的画法。

生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。

生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。

学生动手试着画图,并向全班展示。

方法四:

师:看图,说说每一部分分别表示什么?生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间既参加跳绳又参加踢毽的。

师:你能列式计算这两个小组的人数吗?

生:9+8-3=14(人)

生:(8-3)+3+(9-3)=14(人)

标签:

标签聚合| 最新说说| 网站地图

Copyright © 2000-2023 说说网 版权所有 备案号:琼ICP备2022010524号

声明: 本站所有图片和文章来自互联网 如有异议 请与本站联系。 本站为个人非盈利网站 不接受任何赞助和广告。